56 research outputs found

    Purcell Effect in the Stimulated and Spontaneous Emission Rates of Nanoscale Semiconductor Lasers

    Get PDF
    Nanoscale semiconductor lasers have been developed recently using either metal, metallo-dielectric or photonic crystal nanocavities. While the technology of nanolasers is steadily being deployed, their expected performance for on-chip optical interconnects is still largely unknown due to a limited understanding of some of their key features. Specifically, as the cavity size is reduced with respect to the emission wavelength, the stimulated and the spontaneous emission rates are modified, which is known as the Purcell effect in the context of cavity quantum electrodynamics. This effect is expected to have a major impact in the 'threshold-less' behavior of nanolasers and in their modulation speed, but its role is poorly understood in practical laser structures, characterized by significant homogeneous and inhomogeneous broadening and by a complex spatial distribution of the active material and cavity field. In this work, we investigate the role of Purcell effect in the stimulated and spontaneous emission rates of semiconductor lasers taking into account the carriers' spatial distribution in the volume of the active region over a wide range of cavity dimensions and emitter/cavity linewidths, enabling the detailed modeling of the static and dynamic characteristics of either micro- or nano-scale lasers using single-mode rate-equations analysis. The ultimate limits of scaling down these nanoscale light sources in terms of Purcell enhancement and modulation speed are also discussed showing that the ultrafast modulation properties predicted in nanolasers are a direct consequence of the enhancement of the stimulated emission rate via reduction of the mode volume.Comment: 12 pages, 5 figure

    Dynamics of resonant tunneling diode optoelectronic oscillators

    Get PDF
    Tese de dout., Física, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012The nonlinear dynamics of optoelectronic integrated circuit (OEIC) oscillators comprising semiconductor resonant tunneling diode (RTD) nanoelectronic quantum devices has been investigated. The RTD devices used in this study oscillate in the microwave band frequency due to the negative di erential conductance (NDC) of their nonlinear current voltage characteristics, which is preserved in the optoelectronic circuit. The aim was to study RTD circuits incorporating laser diodes and photo-detectors to obtain novel dynamical operation regimes in both electrical and optical domains taking advantage of RTD's NDC characteristic. Experimental implementation and characterization of RTD-OEICs was realized in parallel with the development of computational numerical models. The numerical models were based on ordinary and delay di erential equations consisting of a Li enard's RTD oscillator and laser diode single mode rate equations that allowed the analysis of the dynamics of RTD-OEICs. In this work, several regimes of operation are demonstrated, both experimentally and numerically, including generation of voltage controlled microwave oscillations and synchronization to optical and electrical external signals providing stable and low phase noise output signals, and generation of complex oscillations that are characteristic of high-dimensional chaos. Optoelectronic integrated circuits using RTD oscillators are interesting alternatives for more e cient synchronization, generation of stable and low phase noise microwave signals, electrical/optical conversion, and for new ways of optoelectronic chaos generation. This can lead to simpli cation of communication systems by boosting circuits speed while reducing the power and number of components. The applications of RTD-OEICs include operation as optoelectronic voltage controlled oscillators in clock recovery circuit systems, in wireless-photonics communication systems, or in secure communication systems using chaotic waveforms

    Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors

    Get PDF
    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics. (C) 2013 Optical Society of AmericaFCT [PTDC/EEA-TEL/100755/2008]; FCT Portugal [SFRH/BPD/84466/2012]; Ramon y Cajal fellowship; project RANGER [TEC2012-38864-C03-01]; Direcci General de Recerca del Govern de les Illes Balears; EU FEDER funds; Ministry of Economics and Competitivity of Spain [FIS2010-22322-C02-01

    Optoelectronic oscillators for communication systems

    Get PDF
    We introduce and report recent developments on a novel five port optoelectronic voltage controlled oscillator consisting of a resonant tunneling diode (RTD) optical-waveguide integrated with a laser diode. The RTD-based optoelectronic oscillator (OEO) has both optical and electrical input and output ports, with the fifth port allowing voltage control. The RTD-OEO locks to reference radio-frequency (RF) sources by either optical or electrical injection locking techniques allowing remote synchronization, eliminating the need of impedance matching between traditional RF oscillators. RTD-OEO functions include generation, amplification and distribution of RF carriers, clock recovery, carrier recovery, modulation and demodulation and frequency synthesis. Self-injection locking operation modes, where small portions of the output electrical/ optical signals are fed back into the electrical/optical input ports, are also proposed. The self-phase locked loop configuration can give rise to low-noise high-stable oscillations, not limited by the RF source performance and with no need of external optoelectronic conversion

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 m in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.FCT under the project WOWi [PTDC/EEA-TEL/100755/2008]; programme POCTI/FEDER [REEQ/1272/EEI/2005]; FCT Portugal [SFRH/BPD/84466/2012]info:eu-repo/semantics/publishedVersio

    Spectral-temporal luminescence properties of Colloidal CdSe/ZnS Quantum Dots in relevant polymer matrices for integration in low turn-on voltage AC-driven LEDs

    Get PDF
    This work employs spectral and spectral-temporal Photoluminescence (PL) spectroscopy techniques to study the radiative mechanisms in colloidal CdSe/ZnS Quantum Dot (QD) thin films without and with 1% PMMA polymer matrix embedding (QDPMMA). The observed bimodal transient-spectral PL distributions reveal bandgap transitions and radiative recombinations after interdot electron transfer. The PMMA polymer embedding protects the QDs during the plasma-sputtering of inorganic layers electroluminescent (EL) devices, with minimal impact on the charge transfer properties. Further, a novel TiO2-based, all-electron bandgap, AC-driven QLED architecture is fabricated, yielding a surprisingly low turn-on voltage, with PL-identical and narrow-band EL emission. The symmetric TiO2 bilayer architecture is a promising test platform for alternative optical active materials.European Commission, Seventh Framework Programme (600375); European Commission, Horizon 2020 Framework Programme (828841); European Regional Development Fund, INTERREG V-A España-Portugal (POCTEP) 2014-2020 (0181_NANOEATERS_1_EP); CCDR-N (NORTE-01-0145-FEDER-000019); Fundação para a Ciência e a Tecnologia (UIDB/04650/2020)

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.info:eu-repo/semantics/publishedVersio

    Emerging optical materials, devices and systems for photonic neuromorphic computing : introduction to special issue

    Get PDF
    This is an introduction to the feature issue of Optical Materials Express on Emerging Optical Materials, Devices and Systems for Photonic Neuromorphic Computing

    Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Get PDF
    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing. (C) 2017 Author(s).Fundacao para a Ciencia e a Tecnologia (FCT) [UID/Multi/00631/2013]European Structural and Investment Funds (FEEI) through the Competitiveness and Internationalization Operational Program - COMPETE 2020National Funds through FCT [ALG-01-0145-FEDER-016432/POCI-01-0145-FEDER-016432]European Commission under the project iBROW [645369]project COMBINA [TEC2015-65212-C3-3-PAEI/FEDER UE]Ramon y Cajal fellowshipinfo:eu-repo/semantics/publishedVersio
    • …
    corecore